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2 École Normale Supérieure de Cachan, antenne de Bretagne, Campus de Ker Lann, 35170
Bruz, France.

Received February 28, 2003; accepted October 2, 2003

We consider a free system and an interacting systems having invariant measures
m and n respectively. Under suitable assumptions we prove an explicit formula
relating n with m and implying the absolute continuity of n with respect to m. We
apply our result to a reaction-diffusion equation and to the Burgers equation.
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1. INTRODUCTION

We are here concerned with a stochastic differential equation in a Hilbert
space H of the following form:

dX=(AX+F(X)) dt+`C dW(t), X(0)=x ¥H, (1.1)

where A: D(A) …HQH is linear, C ¥ L(H) is symmetric and nonnegative
and F: D(F) …HQH is nonlinear. Moreover W(t) is a cylindrical Wiener
process in some probability space (W,F, P) on H.
Many partial differential equations perturbed by a white noise may be

written in this form. This type of model arises in many physical situations.
For instance, the stochastic Burgers equation may be considered as a
simple model to describe turbulence phenomena. (7, 8, 16, 17) It can also be used
in the context of the dynamic of interfaces. (18) It has the form



˛ ““t X(t, t)= “
2

“t2
X(t, t)+

1
2
“

“t
(X(t, t)2)+ġ(t, t), t > 0, t ¥ (0, 1),

X(t, t)=0, t > 0, t=0, 1,

X(0, t)=x(t), t ¥ (0, 1).

(1.2)

The unknown is X, whose meaning depends on the physical context. It is a
random variable which depends on a space variable t ¥ (0, 1) and on the
time t \ 0. We consider Dirichlet boundary conditions but we could also
study other boundary conditions (periodic, Neumann,...). The term ġ

represents a noise, we consider the case when it is white in time and white
or correlated in space.
Equation (1.2) can be written in the form (1.1) if we set3 H=L2(0, 1),

3 These mathematical object will be rigourously defined in Section 4.2 later.

the space of square integrable functions. The unknown is then considered
as a function of the time (and on the random parameter) with values in the
Hilbert space H. We also set

Ax(t)=
“
2

“t2
x(t), F(x)=

1
2
“

“t
(x2).

Then, we take

g=`CW

where C describes the space correlation of the noise. This equations has
been extensively studied and, if C is a bounded operator, it is known that
there exists a unique global solution which is a continuous process with
values in H (see ref. 11). It is convenient to emphasize the dependence of
the solution with respect to the initial data x so that we denote the solution
by X(t, x).
It is often important to understand the long time behaviour of the

system described by these equations. In many circumstances there exists
an invariant measure n which describes this behaviour. For, instance if the
system is strongly mixing, we know that for every continuous and bounded
functional j defined on H we have, for any x,

lim
tQ.

j(X(t, x))=F
H

j(y) n(dy).

The measure n is also often called an equilibrium measure. The existence
of an invariant measure for the Burgers equation was proved in ref. 11. In
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ref. 12, it was also proved that this invariant measure is unique and that the
strong mixing property holds. This latter result has been proved under the
assumptions that C is invertible, in other words when the noise is also
white in space. However, more recently, more refined techniques have been
developped in the more difficult case of the Navier–Stokes to prove this
result under much weaker assumptions. (4, 15, 19)

It is then an important problem to understand the structure of this
measure n. In particular, we want to know if it can be described in terms
of a density r. In the finite dimensional case,4 it is natural to try to write

4 This is the case when stochastic differential equations are considered instead of a stochastic
partial differential equation so that H=Rd, a finite dimensional space.

n(dx)=r(x) dx, where dx is the Lebesgue measure. This problem has been
solved in a very general way thanks to Malliavin calculus (see, for instance,
ref. 20).
However, it is well known that in the infinite dimensional case con-

sidered here, the Lebesgue measure cannot be defined and no such refer-
ence measure exists. Moreover, up to now, the Malliavin calculus has not
been generalized in a satisfactory way to this context.
In several situations problem (1.1) describes the evolution of an inter-

acting stochastic system, the corresponding free system being described by
the linear equation

dZ=AZdt+`C dW(t), Z(0)=x ¥H, (1.3)

where Z(t, x) is an Ornstein–Uhlenbeck process. This system also has an
invariant measure m. It is Gaussian and, if A and C commute, is formally
given by

m(dx)=
1
b
exp 1 −1

2
|(−CA)1/2 x|22 dx

where | · | is the norm in H and b a normalizing factor.
Then, we can try to replace the finite dimensional Lebesgue measure

by m and to prove that n is absolutely continuous with respect to m. This
implies the existence of a density r which satisfies

n(dx)=r(x) m(dx).

This problem has been considered mainly when (1.1) describes a
reversible system, see, e.g., refs. 2, 23, and 24. In this case the explicit
expressions of n and m are often available, and so the answer is not difficult
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in general. For instance if C is the identity operator and F=DU is the dif-
ferential of a potential U, then the system is gradient and r(x)=exp U(x).
When the system is not reversible the situation is more involved.

Under suitable assumptions, requiring that C has a bounded inverse and

F
H
|F(x)|2 n(dx) <+., (1.4)

one can prove that n is abolutely continuous with respect to m by the
method presented in ref. 3. However, (1.4) is not fulfilled in some interest-
ing cases such as the Burgers equation. We shall present here a general
approach which applies to several cases as: reaction-diffusion equations,
Burgers equation, Navier–Stokes equations.
Let us explain the main idea of our method. Assume that we are able

to solve Eqs. (1.1) and (1.3) and denote by Pt and Rt the corresponding
transition semigroups:

Ptj(x)=E[j(X(t, x))], j ¥ Bb(H)

and

Rtj(x)=E[j(Z(t, x))], j ¥ Bb(H),

where Bb(H) is the Banach space of all Borel and bounded mappings
j: HQ R, endowed with the sup norm. Let us define the infinitesimal
generators of N and L through the resolvent formulae, see ref. 5 and
Section 2,

(l−N)−1 f(x)=F
.

0
e−ltPtf(x) dt, l > 0, f ¥ Bb(H),

and

(l−L)−1 f(x)=F
.

0
e−ltRtf(x) dt, l > 0, f ¥ Bb(H).

Formally, we have Ptj=eNtj, Rtj=eLtj and the invariant measure
satisfy

F
H
Nj(x) n(dx)=0, F

H
Lj(x) m(dx)=0,

for sufficiently smooth j.
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Our main tool is the following identity

(l−L)−1 f=(l−N)−1 f−(l−N)−1 [OF, D(l−L)−1 fP], f ¥ Bb(H).
(1.5)

We shall show that, assuming that the semigroup Rt is strong Feller, the
function D(l−L)−1 f is well defined and continuous for any f ¥ Bb(H);
moreover it can be extended up to l=0. Assume in addition that

lim
lQ 0

l(l−N)−1 j(x)=F
H

j(y) n(dy), for n-almost all x ¥H, (1.6)

and

lim
lQ 0

l(l−L)−1 j(x)=F
H

j(y) m(dy), for all x ¥H. (1.7)

Then we will show, letting l Q 0 in (1.5) that

F
H
f dm=F

H
f dn+F

H
OF, DL−1fP dn, f ¥ Bb(H). (1.8)

As already mentionned, we will see that the term DL−1f can be defined
rigourously. From (1.8) we can show easily that n is absolutely continuous
with respect to m, see Section 3 later, implying the existence of a density.
Notice that (1.7) is in general very easy to check, see Section 2, whereas
(1.6) requires that the measure n is strongly mixing.
In Section 4, we apply our results to a reaction-difusion equation and

to the Burgers equation with correlated noise. This corresponds to a
noninvertible C and we can treat the case of a nonsymmetric Ornstein–
Uhlenbeck process, so that our result does not does not follow from ref. 3.
Finally, our result can be applied to the two dimensional stochastic

Navier–Stokes equation as will be shown in a forthcoming article.

2. THE FREE SYSTEM

Concerning the linear operators A and C we shall assume:

Hypothesis 2.1.

(i) A is the infinitesimal generator of an analytic semigroup e tA

in H. There existsM, w > 0 such that ||e tA|| [Me−wt, for all t \ 0.
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(ii) C: HQH is bounded and nonnegative and the linear operator
Q defined as

Qx=F
+.

0
e tACe tA

g
x dt, x ¥H,

is of trace class.5 We shall denote by m=NQ the Gaussian measure with

5 Ag is the adjoint of A.

mean 0 and covariance operator Q.
(iii) For all t > 0 we have e tA(H) … Q1/2t (H), where

Qtx=F
t

0
e sACe sA

g
x dt, x ¥H.

(iv) Setting Lt=Q
−1/2
t e tA, the function ||Lt || is Laplace transformable

with Laplace transform:

c(l) :=F
+.

0
e−lt ||Lt || ds,

defined in (−w,+.).

Let us give some comments about Hypothesis 2.1. Under assumptions
(i) and (ii) we can consider the Ornstein–Uhlenbeck semigroup Rt

Rtj(x)=F
H

j(e tAx+y) NQt (dy), j ¥ Bb(H), (2.1)

where NQt is the Gaussian measure in H with mean 0 and covariance
operator Qt.Moreover m is the unique invariant mesure of Rt and we have

lim
tQ+.

Rtj(x)=F
H

j(y) NQ(dy), for all j ¥ Bb(H), x ¥H. (2.2)

If, in addition, Hypothesis 2.1(iii) is fulfilled, then Rt is strong Feller6 and

6 Rt is strong Feller if and and only if for all t > 0 and Borel and bounded j, Rtj is continuous.

the following result holds, see ref. 13.

Proposition 2.2. Assume that Hypothesis 2.1(i)–(iii) holds. Then
for all t > 0 and j ¥ Bb(H) we have Rtj ¥ C1b(H),

7 and

7 Cb(H) is the Banach space of all uniformly continuous and bounded mappings j: HQ R,
endowed with the norm ||j||0=supx ¥H |j(x)|. For k ¥N, Ckb(H) is defined in the usual way.

ODRtj, hP=F
H
OLth, Q

−1/2
t yP j(e tAx+y) NQt (dy) (2.3)
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for all h ¥H.Moreover

||DRtj||0 [ ||Lt || ||j||0, t > 0. (2.4)

Hypothesis 2.1(iv) is unusual but it will play an essential rôle in the
following. Let us give an example where it is fulfilled.

Example 2.3. Let A satisfy Hypothesis 2.1(i) and let C be such that
C(−A)d is a bounded operaator for some d ¥ [0, 1). Then by ref. 14, Sec-
tion 13.1, we have

||Lt || [K1t
− 1+d
2 , t ¥ [0, 1],

for a constant K1. Moreover, (22) we remark that St :=LtL
g
t satisfies a

Riccati equation associated to a control problem (see ref. 21) and for
t \ t0 > 0, we have

OStx, xP=inf 3F
t

t0
|u(s)|2 ds+OSt0 y

x, u(t), yx, u(t)P4 ,

where yx, u is the solution of

yŒ=Ay+`C u, y(t0)=x.

Therefore, choosing u=0 we obtain

OStx, xP [ OSt0 y
x, 0(t), yx, 0(t)P

[ ||e tA
g
St0e

tA|| |x|2 [K2e−2wt |x|2,

for a constant K2.We deduce

||Lt || [K
1/2
2 e

−wt

so that Hypothesis 2.1(iv) holds. It is standard that Hypothesis 2.1(i) holds
for any d ¥ [0, 1) and that Hypothesis 2.1(ii) holds provided

Tr[(−A)−(d+1)] <..

We recall that Rt is not a strongly continuous semigroup neither in
Cb(H) nor in Bb(H) when A ] 0. However we can define its infinitesimal
generator L, through its resolvent as in ref. 5. In fact, setting

F(l) f(x)=F
.

0
e−ltRtf(x) dt, l > 0, f ¥ Bb(H),
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it is not difficult to show that F(l) maps Bb(H) into Bb(H) and it is one-to-
one. Consequently, there exists a unique linear closed operator L in Bb(H)
such that

(l−L)−1 f(x)=F
.

0
e−ltRtf(x) dt, l > 0, f ¥ Bb(H).

The following result is a corollary of Proposition 2.2 via Laplace trans-
form.

Proposition 2.4. Assume that Hypothesis 2.1 holds. Let f ¥ Bb(H)
and l > 0. Then j=(l−L)−1 f ¥ C1b(H) and

||Dj||0 [ c(l) ||f||0. (2.5)

Consequently

D(L) … C1b(H), (2.6)

with continuous embedding.

We end this section by proving some results about the behaviour
of (l−L)−1 as l Q 0; we shall see that, whereas (l−L)−1 is singular,
D(l−L)−1 f has a limit when l Q 0.

Proposition 2.5. Assume that Hypothesis 2.1 holds. Then for any
f ¥ Bb(H) there exist the limits

lim
lQ 0

l(l−L)−1 f(x)=F
H
f dm, for all x ¥H, (2.7)

lim
lQ 0
D(l−L)−1 f(x)=F

+.

0
DRtf(x) dt

:=−DL−1f(x), for all x ¥H. (2.8)

Moreover DL−1f ¥ Cb(H).

Proof. For any f ¥ Bb(H) we have

l(l−L)−1 f(x)=F
+.

0
e−yRy/lf(x) dy,
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and so (2.7) follows from (2.2). Let us prove (2.8). Since c(l) is defined in
(−w,+.), we have

F
+.

0
||Lt || dt <+..

Using (2.4) this implies that |DRtj(x)| is summable in [0,+.) and that
(2.8) holds. L

3. THE INTERACTING SYSTEM

Here we assume, besides Hypothesis 2.1, that

Hypothesis 3.1.

(i) The differential stochastic equation

dX=(AX+F(X)) dt+`C dW(t), X(0)=x ¥H, (3.1)

has a unique mild solution X(t, x). That is there exists a unique adapted
stochastic process X( · , x) such that

X(t, x)=e tAx+F
t

0
e (t−s) AF(X(s, x)) ds+F

t

0
e (t−s) A`C dW(s), P-a.s.

We denote by Pt the corresponding transition semigroup

Ptj(x)=E[j(X(t, x))], j ¥ Bb(H).

(ii) The semigroup Pt is Feller and has an invariant measure n.

We denote by N its infinitesimal generator, defined by

(l−N)−1 j(x)=F
.

0
e−ltPtj(x) dt, l > 0, j ¥ Bb(H).

It is standard that Pt can be extended to a contraction semigroup on
L2(H, n).

(iii) The measure n is strongly mixing

lim
tQ+.

Ptj(x)=F
H

j(y) n(dy), n-a.s. in Hj ¥ L2(H, n). (3.2)
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These are the key assumptions. We now set technical hypotheses which are
easy to check in the applications even if their proofs may involve tedious
computations.

(iv) There exists a sequence {Fn} of Lipschitz continuous mappings
from H into H such that

Fn(x)Q F(x), n-a.s. inH

and a function g ¥ L2(H, n) such that

|Fn(x)| [ g(x), x ¥H.

It is well known that, under Hypothesis 3.1(iv), problem

dX=(AX+Fn(X)) dt+`C dW(t), X(0)=x ¥H, (3.3)

has a unique mild solution Xn(t, x). Let us denote by P
n
t the corresponding

transition semigroup

Pntj(x)=E[j(Xn(t, x))], j ¥ Bb(H),

and by Nn its infinitesimal generator, defined by

(l−Nn)−1 j(x)=F
.

0
e−ltPntj(x) dt, l > 0, j ¥ Bb(H).

(v) For all t > 0 and n almost every x ¥H

Xn(t, x)QX(t, x), P-a.s. inH

(vi) For all l > 0 and n almost every x ¥H.

F
.

0
e−lt |Fn(Xn(t, x)))−Fn(X(t, x))| dtQ 0 as nQ..

Clearly, (v) implies that

(l−Nn)−1 j(x)Q (l−N)−1 j(x), for all x ¥H, j ¥ Cb(H). (3.4)

Also, since Pt is Feller, Cb(H) is an invariant for N in L2(H, n) and we
have

(l−N)−1 j(x)=F
.

0
e−ltPtj(x) dt, l > 0, j ¥ L2(H, n).
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Writing

l(l−N)−1 j=F
.

0
e−yPy/lj(x) dt,

we deduce from (iii) that

l(l−N)−1 j Q F
H

j(y) n(dy), in L2(H, n), j ¥ L2(H, n). (3.5)

Remark 3.2. It is easy to check that, since Fn is Lipschitz continu-
ous, there exists a positive constantMn such that

E(|Xn(t, x)|) [Mn(1+|x|), x ¥H.

It follows that the transition semigroup Pnt can be extended to the space
Bb, 1(H) of all Borel functions j: HQ R such that j(1+|x|)−1 is bounded.
In the same way one can extend (l−Nn)−1 to Bb, 1(H).

We now prove a basic identity for the regularized equation (3.3).

Lemma 3.3. Assume that Hypotheses 2.1 and 3.1 hold. Then for
any l > 0, n ¥N and any f ¥ Bb(H) the following identity holds

(l−L)−1 f=(l−Nn)−1 f−(l−Nn)−1 [OFn, D(l−L)−1 fP]. (3.6)

Proof. Set, for any e > 0,

Fn, e(x)=
Fn(x)
1+e |x|

, x ¥H.

Then Fn, e are Lipschitz continuous, uniformly in e, and bounded. We
denote by Xn, e(t, x) the mild solution of the differential stochastic equation

dX=(AX+Fn, e(X)) dt+`C dWt, X(0)=x,

by Pn, et the corresponding transition semigroup

Pn, et j(x)=E[j(Xn, e(t, x))], j ¥ Bb(H),

and by Nn, e its infinitesimal generator defined as before. Now, let l > 0 and
f ¥ Bb(H). Consider the following equation

ljn, e−Ljn, e−OFn, e, Djn, eP=f. (3.7)
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Notice that Eq. (3.7) is meaningful in view of (2.6). Setting ljn, e−Ljn, e
=kn, e, (3.7) becomes

kn, e−T
n, e
l kn, e=f, (3.8)

where

Tn, el k=OFn, e, DR(l−L)−1 kP, k ¥ Bb(H).

But, in view of Proposition 2.4, we have

||Tn, el k||0 [ c(l) ||Fn, e ||0 ||k||0, k ¥ Bb(H).

Since limlQ+. c(l)=0, there exists a positive number ln, e such that, if
l > ln, e, Eq. (3.8) can be uniquely solved by a standard fixed point argu-
ment. In conclusion, (ln, e,.) belongs to the resolvent set of Nn, e and we
have

(l−Nn, e)−1=(l−L)−1 (1−T
n, e
l )

−1, for l > ln, e.

It follows that, for l > ln, e,

(l−L)−1 f=(l−Nn, e)−1 f−(l−Nn, e)−1 [OFn, e, D(l−L)−1 fP]. (3.9)

Now, by analytic continuation (3.9) holds for any l > 0. Finally the con-
clusion follows by letting e tend to 0 taking into account Remark 3.2. L

Theorem 3.4. Assume that Hypotheses 2.1 and 3.1 hold. Let m and
n be the invariant measures of Rt and Pt respectively. Then for any
f ¥ Bb(H) we have

F
H
f dm=F

H
f dn+F

H
OF, DL−1fP dn. (3.10)

Moreover n is absolutely continuous with respect to m.

Proof. By Lemma 3.3 we have, for any n ¥N, l > 0,

(l−L)−1 f=(l−Nn)−1 f−(l−Nn)−1 [OFn, D(l−L)−1 fP]. (3.11)

Let us assume for the moment that f ¥ Cb(H). By (3.4) we know that

(l−Nn)−1 f(x)Q (l−N)−1 f(x), for all x ¥H.
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The second term is more delicate to treat. We first write it as follows

(l−Nn)−1 [OFn, D(l−L)−1 fP]

=(l−N)−1 [OF, D(l−L)−1 fP]+An+Bn,

with

An=(l−N)−1 [OFn−F, D(l−L)−1 fP]

and

Bn=((l−Nn)−1−(l−N)−1)[OFn, D(l−L)−1 fP].

Using dissipativity of N in L2(H, n), Proposition 2.4 and Assumption
(3.1)(iv), we have

||An ||L2(H, n) [
1
l

c(l) ||f||0 ||Fn−F||L2(H, n) Q 0,

when nQ..
We split again Bn as follows

Bn=B
1
n+B

2
n,

B1n(x)=F
.

0
e−ltEOFn(Xn(t, x))−Fn(X(t, x)), fl(Xn(t, x))P dt,

B2n(x)=F
.

0
e−ltEOFn(Xn(t, x)), (fl(Xn(t, x))−fl(X(t, x)))P dt

where fl=D(l−L)−1 f. By Proposition 2.4 and Assumption (3.1)(vi)

|B1n(x)| [ c(l) ||f||0 F
.

0
e−ltE |Fn(Xn(t, x))−Fn(X(t, x))| dtQ 0,

for n–almost every x ¥H. Moreover, by Assumption (3.1)(iv)

||B2n ||L1(H, n) [ F
.

0
F
H
E(g(X(t, x) |fl(Xn(t, x))−fl(X(t, x))|) dn dt,

By Assumption (3.1)(v)

g(X(t, x) |fl(Xn(t, x))−fl(X(t, x))|Q 0, dt×dn×dP-a.e.
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Moreover, by Proposition 2.4 and the invariance of n

F
.

0
e−2ltE(g(X(t, x)2 |fl(Xn(t, x))−fl(X(t, x))|2) n(dx) dt

[ 4
c2(l)
2l
||f||20 ||g||L2(H, n).

By uniform integrability, we obtain

||B2n ||L1(H, n) Q 0.

Gathering these results, we deduce that there exists a subsequence such that

(l−Nnk )
−1 [FnkD(l−L)

−1 f](x)Q (l−N)−1 [FD(l−L)−1 f](x), (3.12)

n almost surely. We obtain

(l−L)−1 f=(l−N)−1 f−(l−N)−1 [OF, D(l−L)−1 fP], (3.13)

for any f ¥ Cb(H). It is now easy to extend this to any f ¥ Bb(H) by taking
a sequence fn ¥ Cb(H) which converges pointwise to f.
Now, multiplying both sides of (3.13) by l and letting l Q 0 yields

(3.9) thanks to (2.7) and (3.5).
Let us now prove the absolute continuity of n with respect to m. Let

C …H be a Borel set such that m(C)=0. Then we have

RtqC(x)=NetAx, Qt (C)=0, for all t > 0 and x ¥H.

This follows from the well known fact that, since Rt is strong Feller, the
measure NetAx, Qt is absolutely continuous with respect to m. Consequently,
D(l−L)−1 qC(x)=0 for all x ¥H. Thus, by (3.9) it follows that n(C)=
m(C)=0. L

4. APPLICATIONS

4.1. Reaction-Diffusion Equations

Let D be a bounded subset of Rd with regular boundary “D. Let us
consider the following problem

˛dX(t, t)=(DtX(t, t)+p(X(t, t))) dt+`C dW(t, t), t > 0, t ¥ D,

X(t, t)=0, t > 0, t ¥ “D,

X(0, t)=x(t), t ¥ D,

(4.1)

464 Da Prato and Debussche



where Dt is the Laplace operator, p is a polynomial of odd degree N having
negative leading cofficient, W is space time Brownian sheet, and C is such
that C(−D)d is bounded for some d > 0.8 Setting

8 In the definition of C we assume that the Laplacian is supported with Dirichlet boundary
conditions.

H=L2(D),

Ax(t)=Dtx(t), x ¥ D(A)=H2(D) 5H10(D),

and

F(x)(t)=p(x(t)), x ¥ L2N(D),

problem (4.1) becomes equivalent to problem (1.1).
It is well known that A generates an analytic semigroup of negative

type in H. As discussed in Example 2.3, Hypothesis 2.1 is fulfilled if
d ¥ [0, 1) and

Tr(−A)−1−d <+.. (4.2)

Since the eigenvalues of A behave asymptotically as k2/d when kQ., see
ref. 1, we find that (4.2) holds provided

C
.

k=1
k−2(1+d)/d <+., (4.3)

or, equivalently, to 2(1+d) > d.
In conclusion, Hypothesis 2.1 is fulfilled provided d ¥ [0, 1) if d=1,

d ¥ (0, 1) if d=2, d ¥ (1/2, 1) if d=3. In this case the free system has a
unique invariant measure. If d > 3 Hypothesis 2.1 does not hold.
Let us check now Hypothesis 3.1. Concerning (i), we recall that exis-

tence and uniqueness of a solution of Eq. (4.1) is well known, see, e.g.,
refs. 6 and 13. In the monograph of ref. 6, more general situations are
considered such as systems of reaction-diffusion equations. Existence of an
invariant measure can be found in ref. 13. Also in ref. 6 it was proved that
the semigroup Pt is irreducible and strong-Feller. Therefore, in view of the
Doob theorem, see, e.g., ref. 13, Assumptions 3.1(ii) and (iii) are fulfilled.
Now we set

Fn(x)(t)=
p(x(t))

1+1n x(t)
N−1 , x ¥ D.
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In order to avoid technical difficulties. we restrict our attention to the case
D=[0, 1]d, although the result can be extended to more general domains. In
that case the invariant mesure n is supported by Cb(D), the space of all
bounded and continuous functions onD. Moreover, for any k ¥N, p ¥ [1,.]

F
H
|x|kLp(D) n(dx) <+..

This easily implies Hypothesis 3.1(iv). Also it follows from ref. 6 that, if
x ¥ Cb(D)

Xn(t, x)QX(t, x) P-a.s.

in Cb(D) and in H. This implies 3.1(v) and

Fn(Xn(t, x))−Fn(X(t, x))Q 0 in H, dt×P-a.e., (4.4)

for any x ¥ Cb(D) and thus n almost surely. The following lemma involves
some computations and it is left to the reader.

Lemma 4.1. For any p \ 1 there exists a constant c(p) such that for
any x ¥ Cb(D),

E(|Xn(t, x)|
p
Lp(D)) [ c(p)(|x|

p
Lp(D)+1), -n ¥N, t \ 0.

Then Lemma 4.1 implies Hypothesis 3.1(vi) by uniform integrability
and (4.4).
Therefore, by Theorem 3.4 we find the following result.

Theorem 4.2. Let p be a polynomial of odd degree N, having
negative leading cofficient and let C be such that C(−A)d is bounded with
d ¥ [0, 1) if d=1, d ¥ (0, 1) if d=2 and d ¥ (1/2, 1) if d=3. Then problem
(4.1) has a unique mild solution and there exists a unique invariant
measure n. Moreover if D=[0, 1]d, n is absolutely continuous with respect
to the invariant measure m of the free system.

4.2. Burgers Equation

We are here concerned with the following problem

˛dX(t, t)=(DtX(t, t)+
1
2 Dt(X(t, t)

2) dt+`C dW(t, t),

t > 0, t ¥ (0, 1),

X(t, t)=0, t > 0, t=0, 1,

X(0, t)=x(t), t ¥ (0, 1),

(4.5)
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where Dt and W are as before, H=L2(0, 1), C is such that C(−A)d is
bounded with d ¥ [0, 1),

Ax(t)=Dtx(t), x ¥ D(A)=H2((0, 1)) 5H10((0, 1)),

and

F(x)=1
2 Dt(x

2), x ¥H10(0, 1),

problem (4.5) becomes equivalent to problem (1.1). By proceeding as in the
previous section, it is easy to see that if d ¥ [0, 1) Hypothesis 2.1 is fulfilled,
and that the free system has a unique invariant measure.
Existence of an invariant measure is also proved in ref. 11. Note that

in ref. 11 only the case d=0 was considered, but this result can be easily
extended to the case d > 0.
In order to satisfy Hypothesis 3.1(iv), we need that F(x) ¥H n–almost

surely. This requires that n is supported by H10(0, 1) which is the case if
d > 1/2. Under that condition, it follows from ref. 9 that Pt is strong
Feller. Irreducibility can be shown by a control argument as in ref. 13.
Thus Hypothesis 3.1(iii) is fulfilled by the Doob theorem. Finally,
Hypotheses 3.1(iv)–(v) are satisfied with

Fn(x)=
n

n+|x|
PnF(Pnx), n ¥N,

where Pn is the projector on the linear span of the first n eigenvectors of A.
This follows from similar arguments as in ref. 10. It is easy to see that

|Fn(x)| [ c1 |x|
2
H10(0, 1)

for a constant c1 which does not depend on n. Moreover, using the same
computation as in ref. 10, Proposition 2.6, we have

E(|Xn(t, x)|
4
H10(0, 1)

) [ c2(|x|
4
H10(0, 1)

+1),

for a constant c2 independent on t, n, x. It follows that

E(|Fn(Xn(t, x))|2) [ c1c2(|x|
4
H10(0, 1)

+1)

and (vi) is obtained by uniform integrability.
Therefore, by Theorem 3.4 we find the following result.

Theorem 4.3. There exists a unique invariant measure n for
problem (4.5). Moreover n is absolutely continuous with respect to the
invariant measure m of the corresponding free system.
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